

A survey of FPGA design for AI era

Zhengjie Li, Yufan Zhang, Jian Wang, and Jinmei Lai†

State Key Lab of ASIC and System, School of Microelectronics, Fudan University, Shanghai 201203, China

Abstract: FPGA is an appealing platform to accelerate DNN. We survey a range of FPGA chip designs for AI. For DSP module,
one type of design is to support low-precision operation, such as 9-bit or 4-bit multiplication. The other type of design of DSP
is to support floating point multiply-accumulates (MACs), which guarantee high-accuracy of DNN. For ALM (adaptive logic mod-
ule) module, one type of design is to support low-precision MACs, three modifications of ALM includes extra carry chain, or 4-
bit adder, or shadow multipliers which increase the density of on-chip MAC operation. The other enhancement of ALM or CLB
(configurable logic block) is to support BNN (binarized neural network) which is ultra-reduced precision version of DNN. For
memory modules which can store weights and activations of DNN, three types of memory are proposed which are embedded
memory, in-package HBM (high bandwidth memory) and off-chip memory interfaces, such as DDR4/5. Other designs are new ar-
chitecture and specialized AI engine. Xilinx ACAP in 7 nm is the first industry adaptive compute acceleration platform. Its AI en-
gine can provide up to 8X silicon compute density. Intel AgileX in 10 nm works coherently with Intel own CPU, which increase
computation performance, reduced overhead and latency.

Key words: FPGA; DNN; Low-precision; DSP; CLB; ALM

Citation: Z J Li, Y F Zhang, J Wang, and J M Lai, A survey of FPGA design for AI era[J]. J. Semicond., 2020, 41(2), 021402.
http://doi.org/10.1088/1674-4926/41/2/021402

1. Introduction

Since AlexNet[1] won the ImageNet race at 2012, AI, more
specifically DNN (deep neural network), has made many break-
throughs in the area of computer vision, speech recognition,
language translation, computer games, etc.[2]. Many high-
tech firms, such Amazon, Baidu, Facebook, Google, etc., claim
they are “AI company”[3]. We believe the future is an AI era.

CNN is one type of DNN mainly used in the computer vis-
ion area. CNN[4, 5] such as AlexNet has five convolutional lay-
ers, two pooling layers and three fully connected layers. A con-
volutional layer extracts feature from input feature maps by
shifting K × K kernel with stride S, and generates one pixel in
one output feature map. Convolutional layers consist of intens-
ive multiplication and accumulation (MAC) operations. Pool-
ing layers complete sub-sampling functions. Fully connected
(FC) layers[6] means neurons of one FC layer are fully connec-
ted to neurons of next FC layer which is good at classifica-
tion. RNN[6] is another type of DNN mainly used in sequential
data processing, RNN is composed of fully connected layers
with feedback paths and gating operations.

DNN makes AI reach and surpass a human’s ability in
many tasks. The increased performance of DNN is at the cost
of increased computation complexity and more memory. For
example, compared to AlexNet, VGG-16[7] improve the accur-
acy of top-1 image classification by 11%, but its model size in-
creases 2.3 times. Low-precision computation can ease this
kind of problem. Gysel et al.[8] propose a model approxima-
tion framework which use a fixed point instead of a floating
point. Han et al.[9] find the accuracy of ImageNet database de-

creases less than 0.5% when using 16-bit fixed point in DNN
model. Technology, such as incremental network quantiza-
tion[10] and wide reduced-precision networks (WRPN)[11], can
reduce the precision further, without noticeable decrease of
the accuracy, the precision can be reduced from 8/4 bit to
3/2 bit. BNN[12] (binarized neural network) is an ultra-reduced
precision neural network which reduces model’s weights and
activation values to single bit. Low-precision computation
can largely reduce MAC and memory resources compared to
full-precision computation[13]. However, some DNN or even
some layers of one DNN needs high-accuracy floating point
computation.

GPU[2, 3] is largely used at the training stage of the DNN
model, because it provides floating point accuracy and paral-
lel computation, it also has a well-established ecosystem. At in-
ference stage of DNN model, GPU consumes more energy
which cannot be tolerated in edge devices. FPGA[2−5,13] can
be reconfigured to implement the latest DNN model, and has
less power consumption than GPU. This is the reason Mi-
crosoft use FPGA in its cloud services. ASIC[2, 3] can get high
performance, but it has high NRE cost and time-to-market is
not acceptable. Since new DNN models keep coming up, AS-
IC is not good choice to implement DNN model.

Reconfigurability, customizable dataflow and data-width,
low-power, and real-time, makes FPGA an appealing plat-
form to accelerate CNN. But the performance of the CNN accel-
erator is limited by computation and memory resource on FP-
GA. Zhang et al.[5] builds a roofline model which helps to find
the solution with best performance under limited FPGA re-
source requirement. Qiu et al.[6] find convolutional layers are
compute-intensive layers. Fully-connected layers are memory-
intensive layers. They propose various techniques, such as dy-
namic-precision data quantization, to improve the band-
width and resource utilization.

Correspondence to: J M Lai, jmlai@fudan.edu.cn
Received 26 SEPTEMBER 2019; Revised 19 OCTOBER 2019.

©2020 Chinese Institute of Electronics

REVIEWS

Journal of Semiconductors
(2020) 41, 021402

doi: 10.1088/1674-4926/41/2/021402

http://dx.doi.org/10.1088/1674-4926/41/2/021402

Though we can apply various techniques[5, 7, 13] to im-
prove the performance of inference accelerators on present
FPGA, the most direct way is to redesign the FPGA chip. In
order to meet evolving DNN requirements, the academic
community and FPGA Vendors put a lot of effort into re-
design of the FPGA chip. For DSP module, in order to sup-
port low-precision multiplication, Boutros[14] improve the DSP
block, makes it support 9-bit and 4-bit multiplication. DSP
block[15] of Intel AgileX support Bfloat16 and INT8 computa-
tion. In order to support high-accuracy, Intel[15] and Xilinx[16]

design their DSP to support float point computation.
For the ALM module, in order to support low-precision

MAC, Boutros[17] improved the ALM (adaptive logic module)
with an extra carry chain, or 4-bit adders, or shadow multipli-
ers. These changes make ALM more suitable to low-precision
MAC operation. In order to better implement BNN, Kim
et al.[18] propose two modifications on ALM and CLB (configur-
able logic block), makes ALM and CLB can improve the logic
density of FPGA BNN implementations.

For the memory module, Xilinx[16] and Intel[15] provide
three types of memory which are embedded memory, in-pack-
age HBM (high bandwidth memory) and off-chip memory
interfaces, such as DDR4/5.

Other design considerations include new architecture or
specialized AI processor. Xilinx provides ACAP[16] (adaptive
compute acceleration platform) in 7 nm. ACAP also provides
specialized AI engine[19, 20] which can increase compute dens-
ity by 8X with 50% lower power. Intel provides AgileX[15] in
10 nm with compute express link (CXL), which is a high-per-
formance, low-latency cache- and memory coherent inter-
face between Intel CPUs.

2. DSP module design for AI

With acceptable accuracy, low-precision can make FPGA
implement more MAC operations, which improves computa-
tion performance. So, one design of DSP for AI is to make
DSP support low-precision multiplication. However, some
DNN or even some layers of one DNN need high-accuracy float-
ing point computation. So, the other design of DSP for AI is
to make DSP support floating-point MAC operation.

2.1. Low-precision design

Most of MAC operations are done by DSP module in
FPGA. Boutros et al.[14] finds commercial FPGA, such as Intel
Arria 10[21] and Stratix 10[22] FPGA, do not natively provide
low-precision multiplication below 18-bit. So, they re-
designed the DSP module to support low-precision opera-
tion. The enhanced DSP blocks support 9-bit and 4-bit multi-
plication.

First, they built a base-line DSP which looks like the one
in Arria-10 Intel FPGA, it can perform one 27-bit multiplica-
tion, and two 18-bit multiplication. Its maximum operation

frequency is 600 MHz. Fig. 1(a) shows the simplified architec-
ture of base-line DSP.

For one 27-bit multiplication, A[26:0] × B[26:0], A[26:9] ×
B[26:9] is implemented on 18 × 18 M1 multiplier, A[8:0] ×
B[8:0] is implemented on 9 × 9 M2 multiplier, A[8:0] × B[26:9]
is implemented on 9 × 18 M3 multiplier, A[26:9] × B[8:0] is im-
plemented on 9 × 18 M4 multiplier. For two 18-bit multiplica-
tion, one is implemented on 18 × 18 M1 multiplier, the other
one is implemented on 9 × 18 M3 multiplier and 9 × 18 M4
multiplier. The 9 × 9 M2 multiplier is left unused.

The enhanced DSP keeps working at 600 MHz frequency,
without increasing the inputs and outputs, and ensure back-
ward compatible to base-line DSP.

The enhanced DSP support four 9-bit multiplication, be-
cause the baseline DSP has 72 (= 18 × 4) outputs. The four 9-
bit multiplication is implemented on M1, M2, M3 and M4,
with additional Shifter, Compressor and MUX.

Boutros et al.[14] compare three different methods to imple-
ment eight 4-bit multiplication. The first one is to fracture
each of M1, M2, M3 and M4, make each one perform 4-bit mul-
tiplication. The second one is to fracture M2 and M3 which is
not on the critical path, and add four additional 4-bit multipli-
ers. The last one is to fracture M2 and M3, make M1 and M4
to support one 4-bit multiplier each and add two additional
4-bit multipliers. From the experiment, the second solution is
the best. Fig. 1(b) shows the simplified architecture of en-
hanced DSP block.

From experiments, the enhanced DSP blocks can pack
twice as many 9-bit and four times as many 4-bit multiplica-
tions as DSP blocks in Arria 10. Boutros et al.[14] use COFFE
2[23, 24] to evaluate enhanced DSP block’s area, the results
show it has 12% more area than base-line DSP.

Finally, Boutros et al. [14] evaluate performance of the en-
hanced DSP when implementing different CNN models at
both 8-bit and 4-bit precision. They find FPGA with en-
hanced DSP uses less logic resources and achieves 1.62 × and
2.97 × higher performance respectively if just DSP is used to
implement multiplication.

DSP block of Intel AgileX can work at fixed-point four 9 ×
9 multiplier adder mode[15], which supports for lower preci-
sion INT8 through INT2. This feature facilitates lower-preci-
sion, higher-performance inference. Xilinx ACAP also support
INT8 computation, VC1902 of AI Core Series provides INT8
peak performance up to 13.6 TOP/s [25].

2.2. Floating-point design

Intel Arria 10[21] and Stratix 10[22] FPGA provides the in-
dustry first floating-point DSP. Intel AgileX FPGAs support
Variable-precision DSP, it retains its leading floating-point per-
formance, Intel added additional DSP hardware to achieve 40
TFLOPS of FP16 performance and added hardened Bfloat16
support[15]. The Bfloat16 (Brain Floating Point) floating-point
format is a truncated (16-bit) version of the 32-bit single-preci-

18 × 18 9 × 9 9 × 18 9 × 18

Shifter & compressor & CPA & output register

M1 M2 M3 M4

18 × 18 4 × 4 9 × 18 9 × 18

Shifter & compressor & CPA & MUX & output register

M1 M2 M3 M4

4 × 4 9 × 9 4 × 4 4 × 4

M7 M8 M5 M6

(a) Baseline DSP (b) Enhanced DSP

Fig. 1. (Color online) Simplified architecture of (a) baseline DSP and (b) enhanced DSP.

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021402

Z J Li et al.: A survey of FPGA design for AI era

sion floating-point format (binary32). It is used to accelerate
machine learning.

Previous DSP[26] of Xilinx FPGA does not support floating-
point operation. The DSP Engine of ACAP[19] contains a float-
ing-point multiplier and a floating-point adder. Each floating-
point multiplier input can be in either binary32 (single-preci-
sion or FP32) or binary16 (half-precision or FP16) format.
VC1902 of AI Core Series provides FP32 peak performance up
to 3.2 TFLOP/s[25].

3. ALM/CLB module design for AI

As mentioned before, with acceptable accuracy, low-preci-
sion can improve FPGA MAC performance. Most MAC opera-
tion is done by DSP module in FPGA. But DSP blocks repres-
ent only 5% of the FPGA core area in DSP-rich devices[27]. Just
enhancing the DSP block is not enough. ALM are the most
abundant logic resource in Intel FPGA. ALM enhancements
will impact more on MAC performance than DSP block en-
hancements.

BNN[12] is an ultra-reduced precision version of DNN, at
the same time, BNN can keep accuracy acceptable. BNN de-
creases memory and computation resources dramatically,
and increase the computation performance. In order to in-
crease the logic density of FPGA BNN implementations, ALM
and CLB can be enhanced.

3.1. Low-precision design

Boutros et al.[16] make three different architectural en-
hancements to the ALM of Intel FPGAs to improve the dens-
ity of on-chip low-precision MAC operations with minimal
area and delay cost.

Fig. 2(a) shows the first architecture enhancement, that
is ALM with the proposed extra carry chain architecture modi-
fications. Fig. 2(b) shows the second architecture enhance-
ment, that is ALM with the proposed 4-bit adder architecture

which fracture each 4-LUT into two 3-LUT and has two addi-
tional full adders and multiplexing. In this way, ALM can imple-
ment more adders. Fig. 2(c) shows the third architecture en-
hancement, that is LAB with the proposed shadow multiplier.
When shallow multiplier works, the middle two ALMs is not
available. In this way, it can increase the density of on-chip
MAC operation.

Boutros et al.[16] extended the COFFE 2[23, 24] to support
these three architectures, and used it to generate detailed
area and delay values. With minimal area and delay cost, the
extra carry chain architecture can achieve a 21% and a 35%
reduction in average MAC delays and areas, respectively. The
4-bit Adder architecture achieves similar results compared to
extra carry chain architecture.

Combining shadow multiplier and 4-bit adder architec-
tures can get the best result which increase 6.1 × MAC dens-
ity, it also leads to larger tile area and larger critical path
delay value.

3.2. BNN design

For each layer of neural network of BNN, the input (ex-
cept for original input), the weights and activations are
binarized (+1 or –1), which can be represented by 1-bit (see
Fig. 3(b)). Figs. 3(a) and 3(b) make a comparison of flow
between CNN and BNN.

The convolutional operation of CNN is multiply-accumula-
tion. For BNN, we can use 1 to represent +1, use 0 to repres-
ent –1, so the multiplication can transform to XNOR opera-
tion. See Fig. 3(c). Then the accumulation operation can trans-
form to popcount operation which is to count the number of
ones in a large word. Thus, the MAC operation of a BNN is re-
duced to XNOR-popcount operation which can easily imple-
mented on FPGA. And the weights and activations of BNN is
1-bit, makes it possible to store all parameters on chip
memory of FPGA.

Four

4-LUT

Carry

(2 adders)

Carry

(2 adders)

MUX

&

output

(a) Extra carry chain

Eight

3-LUT

Carry

(4 adders)

MUX

&

output

(b) 4-bit adder

ALM ALM

(c) Shadow multiplier

LAB
Eight ALMs

Two ALMs

Shadow
multiplier

Fig. 2. (Color online) Proposed extra carry chain architecture modifications.

2.4 6.2 ...

3.3 1.8 ...

...
*

0.8 0.1

0.3 0.8

5.0 9.1 ...

4.3 7.8 ...

...

Input features Output features
Weights

(a) CNN

1 −1 −1

−1
−1

−1

−3

−7

...

1 1 ...

...
*

1

1
=

1 ...

3 ...

...

Input features Integer
Weights

1 ...

1 ...

...

Output features

B
a

tc
h

N
o

rm

B
in

a
ri

ze

=

1 × 1 = 1

1 × −1 = −1

−1 × 1 = −1

−1 ×−1 = 1

1 XNOR 1 = 1

1 XNOR 0 = 0

0 XNOR 1 = 0

0 XNOR 0 = 1
A

d
d

 b
ia

s

N
o

n
-li

n
ea

ri
ty

P
o

o
l

P
o

o
l

3.8 8.9 ...

5.4 8.2 ...

...

(b) BNN (c) XNOR

Fig. 3. (Color online) The difference of CNN and BNN: (a) CNN, (b) BNN and (c) XNOR replace multiplication for BNN.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021402 3

Z J Li et al.: A survey of FPGA design for AI era

On an FPGA, the XNOR part is easily implemented with
LUTs. For the popcount part, it is common to use a binary full
adder tree to sum up the bits in vectors. This requires N − 1
binary adders in different bit-width[2]. For long vectors, this
process requires more LUT resources.

Kim et al.[18] propose two ALM modifications that im-
prove the logic density of FPGA BNN implementations. For
the first ALM modification, Kim et al.[18] propose additional
carry-chain circuitry in an ALM. Instead of propagating carry,
it propagates sum. The sum-out can propagate to the carry-
in of the next adder. In this way, it creates a chain of sum.

This ALM modification only adds two dedicated ports in
carry-chain direction, it doesn’t add other ports to ALM, so it
does not affect the general routing circuit. This ALM modi-
fication allows two carry-chains to be used in two distinct
modes. For the first mode, it uses the original carry chain,
and outputs the sum result. For the second mode, it uses a
new carry chain to perform popcount operation, and out-
puts carry result. Fig. 4(a) shows the first ALM modification
for BNN, that is ALM with the proposed extra charry chain
which propagates sum.

For the second ALM modification, Kim et al.[18] propose
to add an additional FA (full adder) on top of ALM modifica-
tion 1 (see Fig. 4(b)). The ALM modification 1 build the first
level of the popcount adder tree within an ALM. The ALM
modification 2 with one additional FA wants to build the
second level of popcount adder tree. In this way, two levels
of popcount adder tree are incorporated in one ALM. So, the
total ALM modifications include one carry chain (two adders)
which propagates sum-out, and one FA.

Two architecture changes need to add corresponding
SRAM to configurate MUX select port. Kim et al.[18] also make
the similar architecture changes to the Xilinx FPGA. Through
the experiments, the first change reduces ALM/LUT usage by

23%–44%, across a range of XNOR-popcount widths, depend-
ing on the vendor. The second change reduces ALM/LUT us-
age by 39%–60%[18].

4. Memory module design for AI

Xilinx ACAP[16] provides more memory resources which in-
cludes distributed-RAM, 36 Kb block RAM and 288 Kb Ul-
traRAM. The upcoming Versal HBM series which aims for data
left market, are premium platform with HBM. ACAP also
provide memory interfaces such as DDR4/LPDDR4. Some
Versal ACAPs include Accelerator RAM, an additional 4 MB of
on-chip memory[19].

Intel Agilex[15] FPGAs provide a broad hierarchy of
memory resources, including embedded memory resources,
in package memory, and off-chip memory via dedicated inter-
faces (see Fig. 5(b)). Embedded memory includes 640-bit
MLABs, 20 kB block RAM, and 18.432 MB eSRAM. In package
memory is HBM, which reduces board size, cost and power
requirements. Off-chip memory are interfaces to memory com-
ponents external to the device, including advanced memory
types like DDR5 and Intel Optane DC persistent memory. Oth-
er interfaces are DDR4, QDR, and RLDRAM.

5. Other designs for AI

5.1. Acceleration platform

At June 18th 2019, Xilinx announced that it has shipped
VersalTM AI Core series and Versal Prime series devices. Versal
devices are industry first adaptive compute acceleration
platform (ACAP) which uses TSMC's 7 nm manufacturing pro-
cess technology. ACAP[16] includes scalar engines, adaptable
engines, intelligent engines, HBM, PCIe, etc. The NoC con-
nects them all together, and provides high-bandwidth. See
Fig. 6(a).

Four

4-LUT

Carry

(2 adders)

Carry

&

MUX

(2 adders)

Output

(a) Architecture modification 1

ALM

Four

4-LUT

Carry

(2 adders)

Carry

&

MUX

(2 adders)

Output

(b) Architecture modification 2

ALMSum Sum

FA

&

MUX

(1 adder)

SumCarry Carry

Fig. 4. (Color online) ALM modifications: (a) ALM modification 1 and (b) ALM modification 2.

MLAB,

block RAM,

eSRAM

HBM2

On chip

memory

DDR4/5,

QDR,

Intel

Optane DC

In package

memory

On board

memory
2nd

HyperFlex

10 nm

FPGA fabric

E
M

IB

E
M

IB

EMIB

EMIB

Chiplets

Chiplets

C
h

ip
le

ts

C
h

ip
le

ts

(a) AgileX architecture (b) Advanced memory hierarchy

Fig. 5. (Color online) Intel AgileX Architecture. (a) AgileX Architecture. (b) Advanced memory hierarchy.

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021402

Z J Li et al.: A survey of FPGA design for AI era

The scalar engines include the dual-core Arm® Cortex-
A72 and dual-core Arm® Cortex-R5. The adaptable engines
are previous FPGA fabric, it is comprised of programmable lo-
gic and memory cells. The intelligence engines contain AI en-
gines and DSP engines. ACAP achieves dramatic perform-
ance improvements of up to 20 × over today's fastest FPGA
implementations and over 100 × over today's fastest CPU im-
plementations—for Data Center, 5G wireless and AI, etc.[16].

5.2. Compute-intensive processor

Xilinx design the specialized AI engine[16, 19, 20] to meet
the demand of compute-intensive DNN application, AI en-
gines[16, 20] can provide up to 8X silicon compute density at

50% the power consumption compared to traditional pro-
grammable logic solutions. The AI engine contains: a high-
performance VLIW vector (SIMD) processor which is 1 GHz+
multi-precision vector processor; integrated data memory
which can be extended to high bandwidth memory; and
interconnects for streaming, configuration, and debug. See
Fig. 6(b).

For a CNN model, AI engines can perform convolution
layers, fully connected layers, and activation function (Relu,
Sigmoid, etc.). While programmable logic can implement
pooling function (Max Pool), and store weights and activa-
tion values in UltraRAM.

Table 1. Summary of all enhancements of FPGA for AI era.

No. Inventor Module Goal Enhancement Advantage
1 A Boutros et al.[14] DSP Low-precision

computation
DSP block to support 9-bit
and 4-bit multiplication

Pack 2 × as many 9-bit and 4 × as many 4-bit
multiplications compared to the baseline Arria-10-like
DSP

2 Intel[15] DSP Low-precision
computation

AgileX supports INT8
computation

Provide 2 × the number of 9 × 9 multipliers and doubles
the amount of INT8 operations compared to the prior
generation.

3 Intel[15] DSP High-accuracy
computation

AgileX supports FP32, FP16
and BFLOAT16

Provide up to 40 TFLOPs FP16 or BF16, or up to 20
TFLOPs FP32 DSP performance

4 Xilinx[16] DSP Low-precision
computation

DSP Engine supports INT8
computation

VC1902 of AI Core Series provides INT8 peak
performance up to 13.6 TOP/s[25]

5 Xilinx[16] DSP High-accuracy
computation

DSP Engine supports FP32
and FP16

VC1902 of AI Core Series provides FP32 peak
performance up to 3.2 TFLOP/s[25]

6 A Boutros et al.[17] ALM Low-precision
computation

ALM with extra carry chain,
or more adders, or shadow
multipliers

Extra carry chain provides a 1.5 × increase in MAC
density; 4-bit adder and 9-bit shadow multiplier provides
a 6.1 × increase in MAC density

7 J H Kim et al. [18] ALM/CLB Support BNN Extra carry chain which
propagates sum; additional
FA

The first change reduces ALM/LUT usage by 23%–44%;
the second change reduces ALM/LUT usage by
39%–60%[18].

8 Intel[15] Memory Support more
memory
resources

Embedded memory, in-
package HBM, off-chip
memory interfaces

On-chip memory includes MLABs (640b), block RAM
(M20K), and eSRAM (18 MB); in-package memory
includes HBM2E; on-board memory includes DDR4/5,
QDR/ RLDRAM, Intel Optane DC Persistent Memory

10 Xilinx[16] Memory Support more
memory
resources

Embedded memory, off-
chip memory interfaces

Distributed-RAM(64-bit per CLB), block RAM (36 KB),
UltraRAM (288 KB), Accelerator RAM; DDR4/LPDDR4

11 Xilinx[20] AI Engine Artificial
intelligence

An array of VLIW SIMD high-
performance processors[20]

Deliver up to 8X silicon compute density at 50% the
power consumption of traditional programmable logic
solutions[20]

12 Intel[15] Platform For data-
centric world

10-nm Agilex; innovative
chipletarchitecture[28]

Deliver up to 40% higher core performance, or up to 40%
lower power over previous generation FPGAs[28]

13 Xilinx[16] Platform Adaptive
compute
acceleration
platforms

Intelligent engines (AI and
DSP), adaptable engines,
andscalar engines

Achieve performance improvements of up to 20X over
today's fastest FPGA implementations and over 100X
over today's fastest CPU implementations[19]

Application

processor

&

real time

processor

Programmable

logic

AI engine

&

DSP engine

N
O
C

N
O
C

NOC

HBM, PCIe, transceiver, etc.

Scalar

engines

Adaptable

engines

Intelligent

engines

VLIW

vector

(SIMD)

processor

Interconnect

Integrated

data

memory

(a) ACAP architecture (b) AI engine

Fig. 6. (Color online) ACAP Architecture. (a) ACAP architecture. (b) AI engine.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021402 5

Z J Li et al.: A survey of FPGA design for AI era

5.3. FPGA-CPU platform

On August 29th 2019, Intel has begun shipments of the
first 10 nm Agilex FPGAs. Agilex aims to deal with the data pro-
liferation problem the edge to the network to the cloud, it is
a data-centric product.

What it is most important is that AgileX supports com-
pute express link, which enables a high-speed and memory co-
herent interconnect to future Intel Xeon scalable processors.
Other innovations include: 2nd generation HyperFlex, embed-
ded multi-die interconnect bridge (EMIB), PCIe Gen 5, vari-
able-precision DSP, advanced memory hierarchy, Quad-core
A53 HPS, 112 Gbps transceiver, etc. See Fig. 5(a). AgileX deliv-
ers up to 40% higher core performance, or up to 40% lower
power over previous generation high-performance FPGAs[28].

6. Conclusion

Reconfigurability, low-power and real-time makes FPGA
excel at inference tasks. The FPGA chip has to redesign to bet-
ter implement different evolving DNN requirements. Table 1
shows the summary of all enhancements of FPGA for the AI
era.

For the DSP module, in order to support low-precision
techniques, Boutros et al. enhance DSP block to support 9-bit
and 4-bit multiplication. DSP of Intel AgileX supports INT8 com-
putation. In order to support high-accuracy, Intel and Xilinx
design their DSP to support float point computation. For ALM
module, Boutros et al. enhance ALM with extra carry chain, or
more adders, or shadow multipliers modification increase the
density of on-chip MAC operation. Kim et al. propose two
modifications on ALM and CLB (configurable logic block) bet-
ter support BNN implementation. For memory module, ACAP
of Xilinx and Agilex of Intel provide more memory resources
which include three types of memory which are embedded
memory, in-package HBM (high bandwidth memory) and off-
chip memory interfaces, such as DDR4/5.

Other design considerations include new architecture or
specialized AI processor. Xilinx ACAP in 7 nm is the first in-
dustry adaptive compute acceleration platform. ACAP also
provides specialized AI engine which can increase compute
density by 8X with 50% lower power. Intel AgileX in 10 nm
works coherently with Intel own CPU, which increase perform-
ance, reduced overhead and latency.

References

Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with
deep convolutional neural networks. Neural Information Pro-
cessing Systems (NIPS), 2012, 1097

[1]

Liang S, Yin S, Liu L, et al. FP-BNN: Binarized neural network on FP-
GA. Neurocomputing, 2017, 275, 1072

[2]

Freund K. Machine learning application landscape. https://www.xil-
inx.com/support/documentation/backgrounders/Machine-
Learning-Application-Landscape.pdf. 2017

[3]

Zhang C, Li P, Sun G, et al. Optimizing FPGA-based accelerator
design for deep convolutional neural networks. The 2015 ACM/SIG-
DA International Symposium on Field-Programmable Gate Ar-
rays, 2015, 161

[4]

Qiu J, Wang J, Yao S, et al. Going deeper with embedded FPGA
platform for convolutional neural network. The 2016 ACM/SIG-
DA International Symposium on Field-Programmable Gate Ar-
rays, 2016, 26

[5]

Yin S, Ouyang P, Tang S, et al. A high energy efficient reconfigur-[6]

able hybrid neural network processor for deep learning applica-
tions. IEEE J Solid-State Circuits, 2018, 53(4), 968
Han S, Mao H, Dally W J. Deep compression: compressing deep
neural networks with pruning, trained quantization and huffman
coding. ICLR, 2016

[7]

Gysel P, Motamedi M, Ghiasi S. Hardware-oriented approxima-
tion of convolutional neural networks. ICLR, 2016

[8]

Han S, Liu X, Mao H, et al. EIE: efficient inference engine on com-
pressed deep neural network. International Symposium on Com-
puter Architecture (ISCA), 2016, 243

[9]

Zhou A, Yao A, Guo Y, et al. Incremental network quantization: to-
wards lossless CNNs with low-precision weights. ICLR, 2017

[10]

Mishra A, Nurvitadhi E, Cook J J, et al. WRPN: wide reduced-preci-
sion networks. arXiv: 1709.01134, 2017

[11]

Hubara I, Courbariaux M, Soudry D. Binarized neural networks.
Neural Information Processing Systems (NIPS), 2016, 1

[12]

Umuroglu Y, Fraser N J, Gambardella G, et al. FINN: A framework
for fast, scalable binarized neural network inference. Internation-
al Symposium on Field-Programmable Gate Arrays, 2017, 65

[13]

Boutros A, Yazdanshenas S, Betz V. Embracing diversity: En-
hanced DSP blocks for low precision deep learning on FPGAs.
28th International Conference on Field-Programmable Logic and
Applications, 2018, 35

[14]

Won M S. Intel® AgilexTM FPGA architecture. https://www.intel.
com/content/www/us/en/products/programmable/fpga/agilex.
html. Intel White Paper

[15]

Versal: The first adaptive compute acceleration platform (ACAP).
https://www.xilinx.com/support/documentation/white_papers/
wp505-versal-acap.pdf. Xilinx White Paper. Version: v1.0, Octo-
ber 2, 2018

[16]

Boutros A, Eldafrawy M, Yazdanshenas S, et al. Math doesn’t have
to be hard: logic block architectures to enhance low-precision mul-
tiply-accumulate on FPGAs. The 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2019, 94

[17]

Kim J H, Lee J, Anderson J H. FPGA architecture enhancements
for efficient BNN implementation. International Conference on
Field-Programmable Technology (ICFPT), 2018, 217

[18]

Versal architecture and product data sheet: overview.
https://www.xilinx.com/support/documentation/data_sheets/ds
950-versal-overview.pdf. DS950. Version: v1.2, July 3, 2019

[19]

Xilinx AI engines and their applications. https://www.xilinx.
com/support/documentation/white_papers/wp506-ai-
engine.pdf. Xilinx White Paper. Version: v1.0.2, October 3, 2018

[20]

Intel Arria 10 core fabric and general purpose I/Os handbook. ht-
tps://www.intel.com/content/dam/www/programmable/us/en/p
dfs/literature/hb/arria-10/a10_handbook.pdf. Version:
2018.06.24

[21]

Intel® Stratix® 10 variable precision DSP blocks user guide.
https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf. Version: 2018.09.24

[22]

Yazdanshenas S, Betz V. Automatic circuit design and modelling
for heterogeneous FPGAs. International Conference on Field-Pro-
grammable Technology (ICFPT), 2017, 9

[23]

Yazdanshenas S, Betz V. COFFE 2: Automatic modelling and optim-
ization of complex and heterogeneous FPGA architectures. ACM
Trans Reconfig Technol Syst, 2018, 12(1), 3

[24]

Versal ACAP AI core series product selection guide. https://www.
xilinx.com/support/documentation/selection-guides/versal-ai-
core-product-selection-guide.pdf. XMP452. Version: v1.0.1, 2018

[25]

UltraScale architecture DSP slice user guide. https://www.xilinx.
com/support/documentation/user_guides/ug579-ultrascale-
dsp.pdf. UG579. Version: v1.9, September 20, 2019

[26]

Langhammer M, Pasca B. Floating-point DSP block architecture
for FPGAs. The 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2015, 117

[27]

Intel® AgilexTM FPGA advanced information brief. https://www.in-
tel.com/content/dam/www/programmable/us/en/pdfs/literat-
ure/hb/agilex/ag-overview.pdf. AG-OVERVIEW Version:
2019.07.02

[28]

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/021402

Z J Li et al.: A survey of FPGA design for AI era

https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
http://dx.doi.org/10.1109/JSSC.2017.2778281
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
http://dx.doi.org/10.1145/3301298
http://dx.doi.org/10.1145/3301298
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
https://www.xilinx.com/support/documentation/backgrounders/Machine-Learning-Application-Landscape.pdf
http://dx.doi.org/10.1109/JSSC.2017.2778281
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
http://dx.doi.org/10.1145/3301298
http://dx.doi.org/10.1145/3301298
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
http://dx.doi.org/10.1109/JSSC.2017.2778281
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
http://dx.doi.org/10.1145/3301298
http://dx.doi.org/10.1145/3301298
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/versal-ai-core-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf

