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Abstract: FPGA  is  an  appealing  platform  to  accelerate  DNN.  We  survey  a  range  of  FPGA  chip  designs  for  AI.  For  DSP  module,
one type of  design is  to support  low-precision operation,  such as 9-bit  or  4-bit  multiplication.  The other type of  design of  DSP
is to support floating point multiply-accumulates (MACs), which guarantee high-accuracy of DNN. For ALM (adaptive logic mod-
ule)  module,  one type of  design is  to support  low-precision MACs,  three modifications of  ALM includes extra carry chain,  or  4-
bit  adder,  or  shadow multipliers  which increase the density of  on-chip MAC operation.  The other enhancement of  ALM or CLB
(configurable  logic  block)  is  to  support  BNN  (binarized  neural  network)  which  is  ultra-reduced  precision  version  of  DNN.  For
memory modules which can store weights and activations of  DNN, three types of  memory are proposed which are embedded
memory, in-package HBM (high bandwidth memory) and off-chip memory interfaces, such as DDR4/5. Other designs are new ar-
chitecture and specialized AI engine. Xilinx ACAP in 7 nm is the first industry adaptive compute acceleration platform. Its AI en-
gine can provide up to 8X silicon compute density.  Intel AgileX in 10 nm works coherently with Intel own CPU, which increase
computation performance, reduced overhead and latency.
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1.  Introduction

Since AlexNet[1] won the ImageNet race at 2012, AI, more
specifically DNN (deep neural network), has made many break-
throughs  in  the  area  of  computer  vision,  speech  recognition,
language  translation,  computer  games,  etc.[2].  Many  high-
tech firms, such Amazon, Baidu, Facebook, Google, etc.,  claim
they are “AI company”[3]. We believe the future is an AI era.

CNN is one type of DNN mainly used in the computer vis-
ion  area.  CNN[4, 5] such  as  AlexNet  has  five  convolutional  lay-
ers, two pooling layers and three fully connected layers. A con-
volutional  layer  extracts  feature  from  input  feature  maps  by
shifting K × K kernel with stride S,  and generates one pixel in
one output feature map. Convolutional layers consist of intens-
ive  multiplication  and  accumulation  (MAC)  operations.  Pool-
ing  layers  complete  sub-sampling  functions.  Fully  connected
(FC) layers[6] means neurons of  one FC layer  are fully  connec-
ted  to  neurons  of  next  FC  layer  which  is  good  at  classifica-
tion. RNN[6] is  another type of DNN mainly used in sequential
data  processing,  RNN  is  composed  of  fully  connected  layers
with feedback paths and gating operations.

DNN  makes  AI  reach  and  surpass  a  human’s  ability  in
many tasks.  The increased performance of  DNN is  at  the cost
of  increased computation complexity  and more  memory.  For
example,  compared to  AlexNet,  VGG-16[7] improve the accur-
acy of top-1 image classification by 11%, but its model size in-
creases  2.3  times.  Low-precision  computation  can  ease  this
kind  of  problem.  Gysel et  al.[8] propose  a  model  approxima-
tion  framework  which  use  a  fixed  point  instead  of  a  floating
point. Han et al.[9] find the accuracy of ImageNet database de-

creases  less  than  0.5%  when  using  16-bit  fixed  point  in  DNN
model.  Technology,  such  as  incremental  network  quantiza-
tion[10] and  wide  reduced-precision  networks  (WRPN)[11],  can
reduce  the  precision  further,  without  noticeable  decrease  of
the  accuracy,  the  precision  can  be  reduced  from  8/4  bit  to
3/2 bit.  BNN[12] (binarized neural  network)  is  an ultra-reduced
precision neural  network which reduces model’s  weights and
activation  values  to  single  bit.  Low-precision  computation
can  largely  reduce  MAC  and  memory  resources  compared  to
full-precision  computation[13].  However,  some  DNN  or  even
some  layers  of  one  DNN  needs  high-accuracy  floating  point
computation.

GPU[2, 3] is  largely  used  at  the  training  stage  of  the  DNN
model,  because it  provides floating point accuracy and paral-
lel computation, it also has a well-established ecosystem. At in-
ference  stage  of  DNN  model,  GPU  consumes  more  energy
which  cannot  be  tolerated  in  edge  devices.  FPGA[2−5,13] can
be reconfigured to implement the latest DNN model, and has
less  power  consumption  than  GPU.  This  is  the  reason  Mi-
crosoft  use  FPGA  in  its  cloud  services.  ASIC[2, 3] can  get  high
performance,  but  it  has  high  NRE  cost  and  time-to-market  is
not  acceptable.  Since new DNN models  keep coming up,  AS-
IC is not good choice to implement DNN model.

Reconfigurability,  customizable  dataflow  and  data-width,
low-power,  and  real-time,  makes  FPGA  an  appealing  plat-
form to accelerate CNN. But the performance of the CNN accel-
erator is limited by computation and memory resource on FP-
GA. Zhang et al.[5] builds a roofline model which helps to find
the  solution  with  best  performance  under  limited  FPGA  re-
source  requirement.  Qiu et  al.[6] find  convolutional  layers  are
compute-intensive layers. Fully-connected layers are memory-
intensive layers. They propose various techniques, such as dy-
namic-precision  data  quantization,  to  improve  the  band-
width and resource utilization.
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Though  we  can  apply  various  techniques[5, 7, 13] to  im-
prove  the  performance  of  inference  accelerators  on  present
FPGA,  the  most  direct  way  is  to  redesign  the  FPGA  chip.  In
order  to  meet  evolving  DNN  requirements,  the  academic
community  and  FPGA  Vendors  put  a  lot  of  effort  into  re-
design  of  the  FPGA  chip.  For  DSP  module,  in  order  to  sup-
port low-precision multiplication, Boutros[14] improve the DSP
block,  makes  it  support  9-bit  and  4-bit  multiplication.  DSP
block[15] of  Intel  AgileX  support  Bfloat16  and  INT8  computa-
tion.  In  order  to  support  high-accuracy,  Intel[15] and  Xilinx[16]

design their DSP to support float point computation.
For  the  ALM  module,  in  order  to  support  low-precision

MAC,  Boutros[17] improved  the  ALM  (adaptive  logic  module)
with an extra carry chain,  or 4-bit adders,  or shadow multipli-
ers.  These changes make ALM more suitable to low-precision
MAC  operation.  In  order  to  better  implement  BNN,  Kim
et al.[18] propose two modifications on ALM and CLB (configur-
able  logic  block),  makes  ALM  and  CLB  can  improve  the  logic
density of FPGA BNN implementations.

For  the  memory  module,  Xilinx[16] and  Intel[15] provide
three types of memory which are embedded memory, in-pack-
age  HBM  (high  bandwidth  memory)  and  off-chip  memory
interfaces, such as DDR4/5.

Other  design  considerations  include  new  architecture  or
specialized  AI  processor.  Xilinx  provides  ACAP[16] (adaptive
compute  acceleration  platform)  in  7  nm.  ACAP  also  provides
specialized AI engine[19, 20] which can increase compute dens-
ity  by  8X  with  50%  lower  power.  Intel  provides  AgileX[15] in
10  nm  with  compute  express  link  (CXL),  which  is  a  high-per-
formance,  low-latency  cache-  and  memory  coherent  inter-
face between Intel CPUs.

2.  DSP module design for AI

With  acceptable  accuracy,  low-precision  can  make  FPGA
implement  more  MAC  operations,  which  improves  computa-
tion  performance.  So,  one  design  of  DSP  for  AI  is  to  make
DSP  support  low-precision  multiplication.  However,  some
DNN or even some layers of one DNN need high-accuracy float-
ing  point  computation.  So,  the  other  design  of  DSP  for  AI  is
to make DSP support floating-point MAC operation.

2.1.  Low-precision design

Most  of  MAC  operations  are  done  by  DSP  module  in
FPGA.  Boutros et  al.[14] finds  commercial  FPGA,  such  as  Intel
Arria  10[21] and  Stratix  10[22] FPGA,  do  not  natively  provide
low-precision  multiplication  below  18-bit.  So,  they  re-
designed  the  DSP  module  to  support  low-precision  opera-
tion.  The enhanced DSP blocks  support  9-bit  and 4-bit  multi-
plication.

First,  they  built  a  base-line  DSP  which  looks  like  the  one
in  Arria-10  Intel  FPGA,  it  can  perform  one  27-bit  multiplica-
tion,  and  two  18-bit  multiplication.  Its  maximum  operation

frequency is  600 MHz. Fig.  1(a) shows the simplified architec-
ture of base-line DSP.

For  one  27-bit  multiplication,  A[26:0]  ×  B[26:0],  A[26:9]  ×
B[26:9]  is  implemented  on  18  ×  18  M1  multiplier,  A[8:0]  ×
B[8:0] is  implemented on 9 × 9 M2 multiplier,  A[8:0] × B[26:9]
is implemented on 9 × 18 M3 multiplier, A[26:9] × B[8:0] is im-
plemented on 9 × 18 M4 multiplier. For two 18-bit multiplica-
tion,  one is  implemented on 18 × 18 M1 multiplier,  the other
one  is  implemented  on  9  ×  18  M3  multiplier  and  9  ×  18  M4
multiplier. The 9 × 9 M2 multiplier is left unused.

The enhanced DSP keeps working at 600 MHz frequency,
without  increasing  the  inputs  and  outputs,  and  ensure  back-
ward compatible to base-line DSP.

The  enhanced  DSP  support  four  9-bit  multiplication,  be-
cause the baseline DSP has 72 (= 18 × 4) outputs. The four 9-
bit  multiplication  is  implemented  on  M1,  M2,  M3  and  M4,
with additional Shifter, Compressor and MUX.

Boutros et al.[14] compare three different methods to imple-
ment  eight  4-bit  multiplication.  The  first  one  is  to  fracture
each of M1, M2, M3 and M4, make each one perform 4-bit mul-
tiplication.  The second one is  to fracture M2 and M3 which is
not on the critical path, and add four additional 4-bit multipli-
ers.  The  last  one  is  to  fracture  M2  and  M3,  make  M1  and  M4
to  support  one  4-bit  multiplier  each  and  add  two  additional
4-bit  multipliers.  From the experiment,  the second solution is
the  best. Fig.  1(b) shows  the  simplified  architecture  of  en-
hanced DSP block.

From  experiments,  the  enhanced  DSP  blocks  can  pack
twice  as  many  9-bit  and  four  times  as  many  4-bit  multiplica-
tions  as  DSP  blocks  in  Arria  10.  Boutros et  al.[14] use  COFFE
2[23, 24] to  evaluate  enhanced  DSP  block’s  area,  the  results
show it has 12% more area than base-line DSP.

Finally,  Boutros et al. [14] evaluate performance of the en-
hanced  DSP  when  implementing  different  CNN  models  at
both  8-bit  and  4-bit  precision.  They  find  FPGA  with  en-
hanced DSP uses less logic resources and achieves 1.62 × and
2.97  ×  higher  performance  respectively  if  just  DSP  is  used  to
implement multiplication.

DSP block of Intel AgileX can work at fixed-point four 9 ×
9  multiplier  adder  mode[15],  which  supports  for  lower  preci-
sion  INT8  through  INT2.  This  feature  facilitates  lower-preci-
sion,  higher-performance  inference.  Xilinx  ACAP  also  support
INT8  computation,  VC1902  of  AI  Core  Series  provides  INT8
peak performance up to 13.6 TOP/s [25].

2.2.  Floating-point design

Intel  Arria  10[21] and  Stratix  10[22] FPGA  provides  the  in-
dustry  first  floating-point  DSP.  Intel  AgileX  FPGAs  support
Variable-precision DSP, it retains its leading floating-point per-
formance, Intel added additional DSP hardware to achieve 40
TFLOPS  of  FP16  performance  and  added  hardened  Bfloat16
support[15].  The  Bfloat16  (Brain  Floating  Point)  floating-point
format is a truncated (16-bit) version of the 32-bit single-preci-
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Fig. 1. (Color online) Simplified architecture of (a) baseline DSP and (b) enhanced DSP.
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sion  floating-point  format  (binary32).  It  is  used  to  accelerate
machine learning.

Previous DSP[26] of Xilinx FPGA does not support floating-
point  operation.  The DSP Engine of  ACAP[19] contains  a  float-
ing-point multiplier and a floating-point adder.  Each floating-
point  multiplier  input  can  be  in  either  binary32  (single-preci-
sion  or  FP32)  or  binary16  (half-precision  or  FP16)  format.
VC1902 of AI Core Series provides FP32 peak performance up
to 3.2 TFLOP/s[25].

3.  ALM/CLB module design for AI

As mentioned before, with acceptable accuracy, low-preci-
sion  can  improve  FPGA  MAC  performance.  Most  MAC  opera-
tion  is  done  by  DSP  module  in  FPGA.  But  DSP  blocks  repres-
ent only 5% of the FPGA core area in DSP-rich devices[27]. Just
enhancing  the  DSP  block  is  not  enough.  ALM  are  the  most
abundant  logic  resource  in  Intel  FPGA.  ALM  enhancements
will  impact  more  on  MAC  performance  than  DSP  block  en-
hancements.

BNN[12] is  an  ultra-reduced  precision  version  of  DNN,  at
the  same  time,  BNN  can  keep  accuracy  acceptable.  BNN  de-
creases  memory  and  computation  resources  dramatically,
and  increase  the  computation  performance.  In  order  to  in-
crease  the  logic  density  of  FPGA  BNN  implementations,  ALM
and CLB can be enhanced.

3.1.  Low-precision design

Boutros et  al.[16] make  three  different  architectural  en-
hancements  to  the  ALM  of  Intel  FPGAs  to  improve  the  dens-
ity  of  on-chip  low-precision  MAC  operations  with  minimal
area and delay cost.

Fig.  2(a) shows  the  first  architecture  enhancement,  that
is ALM with the proposed extra carry chain architecture modi-
fications. Fig.  2(b) shows  the  second  architecture  enhance-
ment,  that is  ALM with the proposed 4-bit  adder architecture

which  fracture  each  4-LUT  into  two  3-LUT  and  has  two  addi-
tional full adders and multiplexing. In this way, ALM can imple-
ment  more  adders. Fig.  2(c) shows  the  third  architecture  en-
hancement, that is LAB with the proposed shadow multiplier.
When  shallow  multiplier  works,  the  middle  two  ALMs  is  not
available.  In  this  way,  it  can  increase  the  density  of  on-chip
MAC operation.

Boutros et  al.[16] extended  the  COFFE  2[23, 24] to  support
these  three  architectures,  and  used  it  to  generate  detailed
area  and  delay  values.  With  minimal  area  and  delay  cost,  the
extra  carry  chain  architecture  can  achieve  a  21%  and  a  35%
reduction in average MAC delays and areas,  respectively.  The
4-bit  Adder  architecture  achieves  similar  results  compared  to
extra carry chain architecture.

Combining  shadow  multiplier  and  4-bit  adder  architec-
tures  can get  the best  result  which increase 6.1  × MAC dens-
ity,  it  also  leads  to  larger  tile  area  and  larger  critical  path
delay value.

3.2.  BNN design

For  each  layer  of  neural  network  of  BNN,  the  input  (ex-
cept  for  original  input),  the  weights  and  activations  are
binarized  (+1  or  –1),  which  can  be  represented  by  1-bit  (see
Fig.  3(b)). Figs.  3(a) and 3(b) make  a  comparison  of  flow
between CNN and BNN.

The convolutional operation of CNN is multiply-accumula-
tion.  For  BNN,  we can use 1  to  represent  +1,  use  0  to  repres-
ent  –1,  so  the  multiplication  can  transform  to  XNOR  opera-
tion. See Fig. 3(c). Then the accumulation operation can trans-
form to popcount operation which is to count the number of
ones in a large word. Thus, the MAC operation of a BNN is re-
duced  to  XNOR-popcount  operation  which  can  easily  imple-
mented  on  FPGA.  And  the  weights  and  activations  of  BNN  is
1-bit,  makes  it  possible  to  store  all  parameters  on  chip
memory of FPGA.
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Fig. 2. (Color online) Proposed extra carry chain architecture modifications.
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Fig. 3. (Color online) The difference of CNN and BNN: (a) CNN, (b) BNN and (c) XNOR replace multiplication for BNN.
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On  an  FPGA,  the  XNOR  part  is  easily  implemented  with
LUTs. For the popcount part, it is common to use a binary full
adder  tree  to  sum  up  the  bits  in  vectors.  This  requires N −  1
binary  adders  in  different  bit-width[2].  For  long  vectors,  this
process requires more LUT resources.

Kim et  al.[18] propose  two  ALM  modifications  that  im-
prove  the  logic  density  of  FPGA  BNN  implementations.  For
the  first  ALM  modification,  Kim et  al.[18] propose  additional
carry-chain  circuitry  in  an  ALM.  Instead  of  propagating  carry,
it  propagates  sum.  The  sum-out  can  propagate  to  the  carry-
in of the next adder. In this way, it creates a chain of sum.

This  ALM  modification  only  adds  two  dedicated  ports  in
carry-chain  direction,  it  doesn’t  add  other  ports  to  ALM,  so  it
does  not  affect  the  general  routing  circuit.  This  ALM  modi-
fication  allows  two  carry-chains  to  be  used  in  two  distinct
modes.  For  the  first  mode,  it  uses  the  original  carry  chain,
and  outputs  the  sum  result.  For  the  second  mode,  it  uses  a
new  carry  chain  to  perform  popcount  operation,  and  out-
puts  carry  result. Fig.  4(a) shows  the  first  ALM  modification
for  BNN,  that  is  ALM  with  the  proposed  extra  charry  chain
which propagates sum.

For  the  second  ALM  modification,  Kim et  al.[18] propose
to  add  an  additional  FA  (full  adder)  on  top  of  ALM  modifica-
tion  1  (see Fig.  4(b)).  The  ALM  modification  1  build  the  first
level  of  the  popcount  adder  tree  within  an  ALM.  The  ALM
modification  2  with  one  additional  FA  wants  to  build  the
second  level  of  popcount  adder  tree.  In  this  way,  two  levels
of  popcount  adder  tree are  incorporated in  one ALM.  So,  the
total  ALM modifications include one carry  chain (two adders)
which propagates sum-out, and one FA.

Two  architecture  changes  need  to  add  corresponding
SRAM to configurate  MUX select  port.  Kim et  al.[18] also  make
the  similar  architecture  changes  to  the  Xilinx  FPGA.  Through
the experiments,  the first  change reduces  ALM/LUT usage by

23%–44%, across a range of XNOR-popcount widths, depend-
ing  on  the  vendor.  The  second  change  reduces  ALM/LUT  us-
age by 39%–60%[18].

4.  Memory module design for AI

Xilinx ACAP[16] provides more memory resources which in-
cludes  distributed-RAM,  36  Kb  block  RAM  and  288  Kb  Ul-
traRAM. The upcoming Versal HBM series which aims for data
left  market,  are  premium  platform  with  HBM.  ACAP  also
provide  memory  interfaces  such  as  DDR4/LPDDR4.  Some
Versal  ACAPs include Accelerator  RAM,  an additional  4  MB of
on-chip memory[19].

Intel  Agilex[15] FPGAs  provide  a  broad  hierarchy  of
memory  resources,  including  embedded  memory  resources,
in package memory, and off-chip memory via dedicated inter-
faces  (see Fig.  5(b)).  Embedded  memory  includes  640-bit
MLABs,  20  kB  block  RAM,  and  18.432  MB eSRAM.  In  package
memory  is  HBM,  which  reduces  board  size,  cost  and  power
requirements. Off-chip memory are interfaces to memory com-
ponents  external  to  the  device,  including  advanced  memory
types like DDR5 and Intel Optane DC persistent memory. Oth-
er interfaces are DDR4, QDR, and RLDRAM.

5.  Other designs for AI

5.1.  Acceleration platform

At  June  18th  2019,  Xilinx  announced  that  it  has  shipped
VersalTM AI  Core series  and Versal  Prime series  devices.  Versal
devices  are  industry  first  adaptive  compute  acceleration
platform (ACAP) which uses TSMC's 7 nm manufacturing pro-
cess  technology.  ACAP[16] includes  scalar  engines,  adaptable
engines,  intelligent  engines,  HBM,  PCIe,  etc.  The  NoC  con-
nects  them  all  together,  and  provides  high-bandwidth.  See
Fig. 6(a).
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The  scalar  engines  include  the  dual-core  Arm®  Cortex-
A72  and  dual-core  Arm®  Cortex-R5.  The  adaptable  engines
are previous FPGA fabric, it is comprised of programmable lo-
gic and memory cells. The intelligence engines contain AI en-
gines  and  DSP  engines.  ACAP  achieves  dramatic  perform-
ance  improvements  of  up  to  20  ×  over  today's  fastest  FPGA
implementations and over 100 × over today's fastest CPU im-
plementations—for Data Center, 5G wireless and AI, etc.[16].

5.2.  Compute-intensive processor

Xilinx  design  the  specialized  AI  engine[16, 19, 20] to  meet
the  demand  of  compute-intensive  DNN  application,  AI  en-
gines[16, 20] can  provide  up  to  8X  silicon  compute  density  at

50%  the  power  consumption  compared  to  traditional  pro-
grammable  logic  solutions.  The  AI  engine  contains:  a  high-
performance  VLIW  vector  (SIMD)  processor  which  is  1  GHz+
multi-precision  vector  processor;  integrated  data  memory
which  can  be  extended  to  high  bandwidth  memory;  and
interconnects  for  streaming,  configuration,  and  debug.  See
Fig. 6(b).

For  a  CNN  model,  AI  engines  can  perform  convolution
layers,  fully  connected  layers,  and  activation  function  (Relu,
Sigmoid,  etc.).  While  programmable  logic  can  implement
pooling  function  (Max  Pool),  and  store  weights  and  activa-
tion values in UltraRAM.

Table 1.   Summary of all enhancements of FPGA for AI era.

No. Inventor Module Goal Enhancement Advantage
1 A Boutros et al.[14] DSP Low-precision

computation
DSP block to support 9-bit
and 4-bit multiplication

Pack 2 × as many 9-bit and 4 × as many 4-bit
multiplications compared to the baseline Arria-10-like
DSP

2 Intel[15] DSP Low-precision
computation

AgileX supports INT8
computation

Provide 2 × the number of 9 × 9 multipliers and doubles
the amount of INT8 operations compared to the prior
generation.

3 Intel[15] DSP High-accuracy
computation

AgileX supports FP32, FP16
and BFLOAT16

Provide up to 40 TFLOPs FP16 or BF16, or up to 20
TFLOPs FP32 DSP performance

4 Xilinx[16] DSP Low-precision
computation

DSP Engine supports INT8
computation

VC1902 of AI Core Series provides INT8 peak
performance up to 13.6 TOP/s[25]

5 Xilinx[16] DSP High-accuracy
computation

DSP Engine supports FP32
and FP16

VC1902 of AI Core Series provides FP32 peak
performance up to 3.2 TFLOP/s[25]

6 A Boutros et al.[17] ALM Low-precision
computation

ALM with extra carry chain,
or more adders, or shadow
multipliers

Extra carry chain provides a 1.5 × increase in MAC
density; 4-bit adder and 9-bit shadow multiplier provides
a 6.1 × increase in MAC density

7 J H Kim et al. [18] ALM/CLB Support BNN Extra carry chain which
propagates sum; additional
FA

The first change reduces ALM/LUT usage by 23%–44%;
the second change reduces ALM/LUT usage by
39%–60%[18].

8 Intel[15] Memory Support more
memory
resources

Embedded memory, in-
package HBM, off-chip
memory interfaces

On-chip memory includes MLABs (640b), block RAM
(M20K), and eSRAM (18 MB); in-package memory
includes HBM2E; on-board memory includes DDR4/5,
QDR/ RLDRAM, Intel Optane DC Persistent Memory

10 Xilinx[16] Memory Support more
memory
resources

Embedded memory, off-
chip memory interfaces

Distributed-RAM(64-bit per CLB), block RAM (36 KB),
UltraRAM (288 KB), Accelerator RAM; DDR4/LPDDR4

11 Xilinx[20] AI Engine Artificial
intelligence

An array of VLIW SIMD high-
performance processors[20]

Deliver up to 8X silicon compute density at 50% the
power consumption of traditional programmable logic
solutions[20]

12 Intel[15] Platform For data-
centric world

10-nm Agilex; innovative
chipletarchitecture[28]

Deliver up to 40% higher core performance, or up to 40%
lower power over previous generation FPGAs[28]

13 Xilinx[16] Platform Adaptive
compute
acceleration
platforms

Intelligent engines (AI and
DSP), adaptable engines,
andscalar engines

Achieve performance improvements of up to 20X over
today's fastest FPGA implementations and over 100X
over today's fastest CPU implementations[19]
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Fig. 6. (Color online) ACAP Architecture. (a) ACAP architecture. (b) AI engine.
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5.3.  FPGA-CPU platform

On  August  29th  2019,  Intel  has  begun  shipments  of  the
first 10 nm Agilex FPGAs. Agilex aims to deal with the data pro-
liferation problem the edge to  the network  to  the cloud,  it  is
a data-centric product.

What  it  is  most  important  is  that  AgileX  supports  com-
pute express link, which enables a high-speed and memory co-
herent  interconnect  to  future  Intel  Xeon  scalable  processors.
Other innovations include: 2nd generation HyperFlex, embed-
ded  multi-die  interconnect  bridge  (EMIB),  PCIe  Gen  5,  vari-
able-precision  DSP,  advanced  memory  hierarchy,  Quad-core
A53 HPS, 112 Gbps transceiver, etc. See Fig. 5(a). AgileX deliv-
ers  up  to  40%  higher  core  performance,  or  up  to  40%  lower
power over previous generation high-performance FPGAs[28].

6.  Conclusion

Reconfigurability,  low-power  and  real-time  makes  FPGA
excel at inference tasks. The FPGA chip has to redesign to bet-
ter  implement  different  evolving  DNN  requirements. Table  1
shows  the  summary  of  all  enhancements  of  FPGA  for  the  AI
era.

For  the  DSP  module,  in  order  to  support  low-precision
techniques, Boutros et al. enhance DSP block to support 9-bit
and 4-bit multiplication. DSP of Intel AgileX supports INT8 com-
putation.  In  order  to  support  high-accuracy,  Intel  and  Xilinx
design their DSP to support float point computation. For ALM
module, Boutros et al. enhance ALM with extra carry chain, or
more adders,  or shadow multipliers modification increase the
density  of  on-chip  MAC  operation.  Kim et  al.  propose  two
modifications on ALM and CLB (configurable logic block) bet-
ter  support  BNN implementation.  For memory module,  ACAP
of  Xilinx  and  Agilex  of  Intel  provide  more  memory  resources
which  include  three  types  of  memory  which  are  embedded
memory,  in-package HBM (high bandwidth memory) and off-
chip memory interfaces, such as DDR4/5.

Other  design  considerations  include  new  architecture  or
specialized  AI  processor.  Xilinx  ACAP  in  7  nm  is  the  first  in-
dustry  adaptive  compute  acceleration  platform.  ACAP  also
provides  specialized  AI  engine  which  can  increase  compute
density  by  8X  with  50%  lower  power.  Intel  AgileX  in  10  nm
works coherently with Intel own CPU, which increase perform-
ance, reduced overhead and latency.
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